thanatos blueprint

Weapon Mechanics

Introduction

PlanetSide 2 is a First Person Shooter, so naturally using your weapons is a big part of gameplay. However, in-game descriptions of weapons and attachments are far from being comprehensive, and online spreadsheets can be confusing to grasp.

Purpose of this guide is to help you learn everything there is to know about weapons in PS2. 

Where to get weapon stats

Explained in this article.

 

Weapon Mechanics

Let’s start by examining the in-game weapon stat picture, and use TRAC 5 Terran Republic Carbine as an example:

TRAC 5 Stats

The main description is mostly for flavor, but it will tell you which factions can use the weapon.  

Weapon Type

TRAC 5 Weapon Type: carbine.

Weapon’s type provides you with a general idea about the weapon, as well as determines which classes can use it, for example:

  • Compared to Assault Rifles, Carbines generally have a bit higher vertical recoil, lower projectile speed, and lower minimum damage, which makes them less effective at range. But better “hip accuracy” makes them better when hip firing.  
  • Carbines can be used by Engineer and Light Assault classes.

Damage

TRAC 5 Damage: 143 / 10m / 112 / 60m.

The four values are: maximum damage, maximum damage range, minimum damage, minimum damage range.

linear damage degradation

Usually players use a more convenient damage formula: 143 @ 10m – 112 @ 60m. 

This reads as: TRAC 5 does maximum damage of 143 up to 10 meters, and then the damage linearly falls down to its minimum value of 112 at 60m. After 60m bullets will always do minimum damage. 

The difference between Max and Min damage values is called damage degradation. The bigger it is, the more noticeable will be the decrease in weapon’s performance as the distance to the target grows. 

Locational damage

aiming points

Bullets that hit the head have their damage multiplied by Headshot Damage Multiplier.

Each weapon has its own damage Headshot Damage Multiplier:

Interesting facts:

  • Both 143 and 125 damage bullets require 4 headshots to kill a generic infantry target.
  • Both 167 and 200 damage bullets require 3 headshots.
  • Headshots ignore Nanoweave Armor.

Arms and body take normal damage from bullets, but it can be reduced by Nanoweave Armor.

Note: bullets ignore the weapon model and go right through it, like it doesn’t exist. Video test.

Legs take 90% damage from bullets, and it can be further reduced by Nanoweave Armor, down to 1x * 0.9 * 0.8 = 0.72x damage.

This can be critical in some edge cases. For example, a Hunter Crossbow bolt to the chest and one knife swing will kill an infantryman through full nanoweave, but will fail to do so if the bolt hits a leg.

Bullet Damage Tiers

Bullet Damage values are usually tiered. Most common bullet damage tiers:

500 (2), 334 (3), 250 (4), 200 (5), 167 (6), 143 (7), 125 (8), 112 (9), 100 (10), 91 (11), 84 (12)

Numbers in brackets show how many bullets with that damage does it take to kill a generic infantry target*. This number is called Bullets To Kill, or simply BTK.

BTK = Round_UP(Target Health / Bullet Damage)

TRAC 5’s BTK against a generic target: 1000 / 143 = 6.99, or 7 when rounded up.

* – generic infantry target is a player with 500 health and 500 shields and no Nanoweave armor, and takes only body hits. All classes except infiltrator have this amount of health and shields. Infiltrators have 500 health and 400 shields.

The important thing to understand about damage tiers, is that If bullet damage gets even one point lower, you’re going to need an additional bullet to kill a generic infantry target.

At 10m TRAC 5 does 143 damage, and it takes 7 bullets with that damage to kill a generic target: 143 * 7 = 1001 damage.

At 11m, TRAC 5 will deal 142 damage, and 7 bullets with 142 damage will deal only 994 damage, so you will need an additional bullet to kill the target.

For most weapons, going even one meter beyond maximum damage range will increase BTK by one. This doesn’t mean that you should always try to stay within maximum damage range, of course. 

BTK Thresholds

bullet damage thresholds

TRAC 5 has damage degradation of two tiers, from 143 to 125 to 112. This means that there are three total bullets-to-kill values for this weapon:

  • BTK of 7 within 10m, where TRAC 5 does 143 damage
  • BTK of 8 between 11m and 39m, where TRAC 5 does between 142 and 125 damage
  • BTK of 9 after 40m, where TRAC 5 does between 124 and 112 damage

These ranges: 0m – 10m, 11m – 39m, 40m+ are called BTK Thresholds.

  • LMGs and most ARs drop only one tier.
  • Most carbines drop two tiers.
  • Most SMGs drop four tiers.

Advantages of high bullet damage

Weapons with higher bullet damage tend to be more effective at range, because their damage is harder to regulate on the receiving end, as they do damage in strong, sudden chunks as opposed to mild continuous drain.

Higher bullet damage makes individual bullets more important, so even if you see a tiny part of the target, and can only hit it with single shots, you’ll still be doing considerable damage. 

If target was already wounded, higher bullet damage increases the chance that you’ll kill the target with your first shot. 

High bullet damage increases your Alpha Damage.

Alpha Damage

Alpha damage is a term used to describe the damage done to the enemy before he has a chance to react, or damage done by a first shot.

In a theoretical situation where two players start shooting at each at the same time, Alpha Damage would describe the damage of their first shots. In this situation, the gun with higher alpha damage will have an advantage, because sometimes the damage of the first shot is enough to kill the opponent. Starting the fight with a headshot would further increase this advantage.

Damage per second vs bullet damage

Rate of Fire doesn’t come into play until the second shot and on.

A slow firing 200 damage ACX-11 versus a rapid fire 125 damage SMG means that the ACX-11 will do 200 damage with the first shot and the SMG will do 125.

It will only take a few tenths of a second for the SMG to compensate for this, but a few tenths of a second is all that separates the best from the worst Time to Kill as well.

It’s a disadvantage that the lower bullet damage gun must climb out before it can gain a DPS advantage with higher RoF. It’s why the AC-X11 owns but the GD-7F is a constantly reloading blah sandwich.

It also means, to the astute observer, that if the first shot is a headshot, the higher damage gun is almost assured to win, regardless of the opponent.

Spray and pray guns don’t land headshots as easily or as often, so best case scenario is 400dmg vs 250dmg, but more realistically it’s 400 vs 125.

This isn’t even including the psychological aspect of having your shields damn near gone the same instant the engagement starts.

It’s also why the Gauss Rifle, Gauss Rifle S, and GD-22S among others are so insanely beastly despite not out-DPSing the more common 143 damage guns on paper. 

Sure, if the fight starts with the lower RoF gun spraying bullets all around the target and never hitting them, they’re TECHNICALLY at more of a disadvantage than had the higher ROF gun done the same, but beginning a fight like this means a certain death for either of them, so it’s entirely academic.

– Epic High Five

Fire Rate

TRAC 5 Fire Rate: 750 RPM (rounds per minute).

Also known as Rate of Fire, or RoF for short. Determines how many rounds would a weapon fire in a minute if it didn’t have to reload. 

Normally, RoF is constant and can’t be affected by attachments, but there are exceptions: G30 VulcanT7 MCG and Hellion chainguns start firing at lower RoF, and build it up to the maximum over time. T7 MCG has access to BRRT attachment, which reduces spool-up time and increases maximum RoF.

Knowing weapon’s RoF, you can calculate its Damage Per Second (DPS):

DPS = Bullet Damage * Rate of Fire / 60 seconds in a minute

TRAC 5’s DPS: 143 * 750 / 60 = 1787

And Time To Kill (TTK):

TTK = (BTK - 1) / ( RoF / 60)

TRAC 5’s TTK = (7 – 1) / (750 / 60) = 6 / 12.5 = 0.48 seconds

Average TTK is considered to be 0.5 seconds.

High RoF is important for close quarters combat, when target will be moving and actively dodging your fire. The higher your RoF, the easier it will be to hit your target with at least some bullets.

High RoF gives an advantage when transitioning to the next BTK Threshold, when the weapon will require an additional bullet to kill. 

For example, let’s compare two SMGs:
AF-4 Cyclone: 167 @ 6m – 100 @ 46m / 652 RoF
SMG-46 Armistice: 125 @ 6m – 84 @ 42m / 896 RoF

They both have similar DPS and effective engagement ranges. At 6m, they have the same TTK of 0.47. However, when crossing the bullet damage threshold from 6m to 7m, Armistice’s TTK will increase to 0.54, and Cyclone’s TTK will increase to 0.56.

They both will need one additional bullet to kill, but Armistice fires those bullets at a much faster rate, so it’s a less of a problem for that weapon.

This determines how much of a penalty is inflicted by using Suppressor, and generally for engaging the target outside the maximum damage range.

Wrel has a great video about using slow firing weapons, which also highlights some other advanced weapon mechanics:

Muzzle Velocity

TRAC 5 Muzzle Velocity: 490 m/s.

Also known as bullet speed or projectile velocity. Determines the speed at which bullet travels, in in-game meters per second. 

In PlanetSide 2, bullets are affected by gravity, and the slower the bullet flies, the more time gravity has to affect it. When firing at distant targets you have to aim a bit higher to hit the target. 

All infantry weapons have the same Gravity of 11.25, except for bolt action sniper rifles, which have 7.5, and shotguns’ slug ammo, which has 8.

So when comparing two weapons with different Projectile Speeds, it’s easy to predict which weapon will have more drop.

High projectile velocity is important for ranged combat, as it makes target easier to hit, both due to less pronounced bullet drop, and due to reduced bullet travel time. When firing at moving target at range, remember to lead – aim a bit ahead of the target. 

Most Vanu Sovereignty primary and secondary infantry weapons do not have bullet drop, but they have lower projectile velocity on average. Their Bolt Action Sniper Rifles, Rocket Launchers and Shotguns Slugs do have drop.

It is assumed that bullets always fly at constant speed, with no acceleration or deceleration mechanics. However, some of rocket weapons, like Heavy Assault’s rocket launcher, do have acceleration mechanics, with starting velocity, acceleration, and maximum velocity.

Reload Speed

TRAC 5 Reload Speed: 3.8 sec / 2.595 sec. 

Listed as long reload / short reload.

Short reload time is used when a gun has its magazine swapped, but the chamber isn’t cycled.
The long reload time is when the magazine is swapped and the chamber gets cycled, for most guns this is only if you empty the entire magazine.

Ammunition

TRAC 5 Ammunition: 40 / 240.

Listed as Magazine / Total Ammo. How many rounds the gun holds / how many rounds do you carry with yourself, including rounds loaded into weapon.

Some Vanu Sovereignty weapons use infinite ammo with heat mechanic: weapon generates heat when you fire, and loses heat when you stop firing. 

Bullet origin

Not a statistic, but important part of weapon mechanics. In PlanetSide 2, bullets don’t actually fly from the weapon’s barrel, they fly from your first person camera, which is located somewhere in the upper chest of your 3rd person model.

Hip Accuracy and Aim Accuracy
(Cone of Fire)

Overall weapon accuracy is determined by two separate mechanics: recoil and cone of fire. Recoil is discussed in detail in the section below, for now let’s talk about Cone of Fire, which is an important mechanic, with lots of quirks and subtleties around it.

TRAC 5 CoF stats^ this is what you can see on the weapon stats sheet in game. But we will use the picture below, which is easier to comprehend.

TRAC 5 CoF statistics

Basics

planetside 2 cone of fire
PlanetSide 1 picture

Fired bullets are randomly distributed within the cone called Cone of Fire (CoF), measured in degrees. 

At all times there are 3 CoF values: Minimum, Current and Maximum

As long as you don’t fire, your Current CoF will almost instantly reduce to Minimum CoF

Minimum CoF depends on your stance – what your legs are doing at the moment, and whether you’re aiming down sights or not. The table above lists the Minimum CoF for TRAC 5 for all stances.

Sprint CoF value is meaningless, because no weapon can fire while sprinting, and all weapons are subjected to Sprint Recovery – a delay before you can fire after you stopped sprinting.

Sprint Recovery is equal to 0.3 seconds for infantry weapons and 0.5 seconds for MAX weapons.

Cone of Fire Bloom

When you fire, your Current CoF will increasingly grow (bloom) with each shot, at a rate listed in Bloom per Shot field. It will continue to grow until you stop firing or your Current CoF reaches Maximum CoF

Notice that there are different Bloom per Shot values for aiming down sights and hip firing.

Usually, hip Bloom per Shot is double of the ADS Bloom per Shot, but there are few exceptions: T7 MCG, SMGs, shotguns, and most of the sniper rifles have same Bloom per Shot for both hip and ADS. Weapons that do more damage per bullet usually have higher Bloom per Shot values.

Size of the crosshair roughly indicates the size of your Current CoF when hip firing, but there is no way to ascertain your Current CoF when you aim down sights.

When you stop firing, Current CoF will shrink back to the Minimum CoF for your current stance, after a small delay, usually equal to the refire time.

CoF size increase speed is 50 degrees per second, and CoF size decrease speed is 20 degrees per second.

First few fired shots are the most accurate. The longer you fire the weapon without pause, the less accurate will it become. 

Example: If you aim down sights with TRAC 5 while moving while standing, your CoF will be 0.3.

If you fire ten rounds, your CoF will bloom by

0.05 x 10 = 0.5,

and will be equal to

0.3 + 0.5 = 0.8 degrees. 

When you stop firing, your Current CoF will reduce back to 0.3, after a delay, equal to the refire time:

60 / 750 = 0.08 seconds.

And the reduction itself will take will take

(0.8 – 0.3) / 20 = 0.025 seconds.

Advanced Information

Rule 1 : if you change stances while firing, and your Current CoF is bigger than Minimum CoF for your new stance, your Current CoF will stay big until you stop firing.

Example: You see an enemy while sprinting. You stop sprinting, and start firing from the hip while moving. Then you decide you could use additional accuracy and aim down sights. But your cone of fire cannot reduce while you fire, so it will stay as big as it was when you were hip firing. The only benefit is that you will now use ADS CoF Bloom parameter. 

Lack of understanding of this aspect of CoF mechanics is the reason behind 99% complains about “bad hit detection”, and source of complaints “I dumped full mag in enemy’s back, then he turned around in killed me”. It’s likely out of that full mag only several bullets hit because the shooter’s CoF was huge.

Tip: In situations like this, either don’t waste time and speed on aiming down sights, or stop firing for a moment to let your cone of fire reset.

Exception: if you change stances and your Current CoF is larger than Maximum CoF for your current stance, your Current CoF will reduce to match. 

Most weapons cannot take advantage of this. Exceptions:

T7 MCG has fixed ADS CoF. ADSing even for a tiniest amount of time will “reset” the current CoF for this weapon, which got big while hip firing. 

NSX Naginata has very small Maximum CoF while standing still, so even if your Current CoF is huge, staying still for a moment will reduce your Current CoF back to the small Maximum CoF.

Rule 2 : if you change stances while firing, and your Current CoF is smaller than the Minimum CoF for your new stance, your Current CoF will increase to match. However, if your current CoF is larger than Minimum CoF for your new stance, your Current CoF will remain the same. 

Implication: standing still can provide additional accuracy to first few fired shots, but then you can start moving without any cost in accuracy.  

This can be best explained by examples:

As you go about your business, you see an enemy and decide to kill him. 

Example 1: You decide that you need maximum accuracy. You stand still and aim down sights and fire a ten round burst from your TRAC 5. Your initial CoF is 0.1, after firing ten rounds it increases to 0.1 + 0.05 * 10 = 0.6.

Dramatization: you successfully kill your target, but enemy sniper sees that you just stand still and kills you. 

Example 2: You realize that standing still is a bad idea. You fire a ten round burst from TRAC 5 while aiming down sights and standing moving. Your initial CoF is 0.3. You fire off 10 rounds, and your CoF becomes 0.3 + 0.05 * 10 = 0.8. 

Dramatization: you avoid being sniped, but due to increased CoF and because it’s harder to shoot while moving, too many of your shots have missed and target got away. 

Example 3: You become the guru of gunplay. You fire four rounds with TRAC 5 while standing still and aiming down sights, then you start moving and fire six more rounds. 

Your initial CoF is 0.1. You fire 4 rounds and it blooms to 0.1 + 0.05 * 4 = 0.3. Then you start moving, and due to changing stance your CoF “increases” from 0.3 to 0.3. Then you fire off 6 more rounds and your CoF blooms to 0.3 + 0.05 * 6 = 0.6. 

Notice, that even though you were moving 60% of the time, your final CoF was the same 0.6 as in Example 1, when you were standing still the whole time. 

Standing still during first few shots will provide an accuracy boost. But after those few shots, standing still will not provide any additional accuracy other than that standing still in itself makes hitting easier.

Jumping and Falling

Jumping and falling increases your CoF to maximum value, so players are extremely inaccurate mid-air. Jumping also slows you down, and this effect stacks. After a few consecutive jumps, your movement will slow down to a crawl for a few seconds. Normally, players can’t aim down sights while jumping or falling.

Example: You jumped from the roof and your CoF increased to its Maximum value. While falling, you saw an enemy and opened fire. When you land, your cone of fire will stay huge until you stop shooting and let your cone of fire reset.

Mechanics: if you jump while holding TRAC 5, your Current CoF will grow from 1.5 (stand still hip) to 7 (jump). This will take (7 – 1.5) / 50 = 0.11 seconds. When you land, your CoF will shrink from 7 back to 1.5 over (7 – 1.5) / 20 = 0.275 seconds.

 Tip: If you hope to actually hit something after jumping, you must wait a split second and let your cone of fire reset before you start shooting.

Exception: If you fall a short distance of ~5 meters without pressing [Jump], you will still be able to ADS while falling, and CoF will not increase to Jumping CoF value. While falling this short distance, you will be considered Standing Moving, even if you hold [Crouch].

Angular Size

Knowing Angular Size of the target is useful when you want to compare target’s size to your Cone of Fire, which is the principle behind Burst Length Calculator.

Angular Size is measured in degrees. Check out the wikipedia page if you forgot what it is.

Example of CoF analysis

Let’s find out the maximum amount of rounds that we can land on an enemy 30m away within one burst from TRAC 5. 

Burst Length = ((Angular Size - Initial CoF) / CoF Bloom) + 1

Normally, calculating Angular Size requires trigonometry, but we’re gonna use a simpler way:

Angular Size calculations

Let’s calculate Angular Size for an enemy 30m away:

Enemy far awayThe screenshot has resolution of 1920 x 1080 pixles, with 74 degrees vertical Field of View.

This means 1 vertical degree is:

1080 / 74 = 14.59 vertical pixels

Using PhotoShop or MS Paint, let’s measure the enemy player. The whole enemy figure appears to be 42 pixels tall and 13 pixels wide:

rTbo904
Enemy center mass goes in a 13 by 13 pixels circle.

mlyOeV1
Now let’s convert pixels into degrees:

Angular Size = 13 / 14.59 = 0.89 degrees

We’ll be shooting TRAC 5 while standing moving and aiming down sights:

Initial CoF: 0.3
CoF bloom: 0.05

Now let’s use all these values to calculate the Burst Length:

Burst Length = ((Angular Size - Initial CoF) / CoF Bloom) + 1 

Burst Length = ((0.89 - 0.3) / 0.05) + 1 = 12.8 shots

We should round this up to 13 shots.

Continuing to fire will increase CoF further, and start reducing chances of hitting the target, but the probability of hitting will still be very high, with an added chance of hitting head or leg hitboxes, so it’s not a terrible terrible risk to continue firing.

At 30m, TRAC 5 will take 10 hits to kill a full nanoweave target with body shots. 

So provided you can control recoil well and miss only a few shots, it’s possible to kill an enemy at 30m with TRAC 5 within one long burst. 

This example assumed we fired while moving. If we start firing while standing, Initial CoF will reduce from 0.3 to 0.1, increasing the Burst Length by 4 shots. 

Standing still is less safe, but bringing in some advanced weapon mechanics (see Advanced Information, Rule 2 above), it’s possible to get the best of both worlds.

These are very approximate calculations, but they do show that CoF-wise PS2 weapons are surprisingly accurate, and the big portion of player skill comes in the form of holding aim on target, rather than on burst control.

Calculated Angular Size

For future reference, I’ve gone through the trouble of calculating Angular Sizes of target’s center mass at different ranges from 3m to 70m. Click on pictures to enlarge.

Same screenshots in imgur album – just in case.

Iron Sight Zoom

TRAC 5 Iron Sight Zoom: 1.35x.

planetside 2 iron sights

“Default ADS Magnification” would be a more proper way to call it.

The strength of magnification when you aim down sights. For all weapons that actually use Iron Sights, 1.35x is the standard value. 1x Reflex Sights and HS/NV scope also provide 1.35x magnification. For sniper rifles that can’t use Iron Sights, “iron sight zoom” shows the magnification of the default sniper scope.

Fire Modes

Some weapons can switch between fire modes by pressing [B] key. There are Semi Auto, 2-Round Burst, 3-Round Burst and Full Auto fire modes.

Using single shot and burst modes should be avoided when possible, because the first shot of each burst (or each shot in semi auto) is subjected to First Shot Recoil Multiplier. This increases your recoil per time, and makes it harder to land several consecutive shots/bursts on target.

Burst weapons that always fire in 2-3 round bursts are an exception to that rule, since they usually have very low first shot recoil modifier. 

For purposes of weapon mechanics, the same weapon in different fire modes is considered two different weapons. This makes possible performance-altering fire modes, such as for Spiker VS pistol, which has a burst fire mode and a charge up splash attack mode.

Hidden Statistics

These statistics are not shown on the in-game stats sheet, but they still affect the performance of your weapon in a meaningful way. 

You can check them at DasAnfall.

Equip time

Equip Time refers to the time it takes for you to switch to an item and prepare it for use. 

However, first you have wait through the Unequip Time of the item you had in hands previously. Unequip Time is equal to 0.25 sec for all weapons.

Example

Your primary weapon is TRAC 5 with 0.55 sec Equip Time. Your sidearm is Emperor with 0.25 sec Equip Time.

Switching from your primary weapon to the sidearm will take 0.25 second Unequip Time + 0.25 second Equip Time = 0.5 seconds before you can fire.

Switching from your sidearm to the primary weapon will take 0.25 second Unequip Time + 0.55 second Equip Time = 0.8 seconds before you can fire.

General notes

  • Bigger and heavier weapon types have longer Equip Time.
  • Equip Time is equal to 0.25 seconds for all pistols and wielding the knife
  • Ranges from 0.55 to 1.2 seconds for most primary weapons.
  • Equip time is increased by forward grip and underbarrel attachments.
  • The delay before you can fire the weapon after a quick knife swing increases with equip time. 

Projectile Lifespan

Determines the amount of time that bullet exists for. If the bullet doesn’t hit anything during it’s lifespan, it will disappear harmlessly.

Usually it’s not important, but can be crucial in certain edge cases, like super long range sniping:

Spectre’s bullets have lifespan of 1.25 seconds. Normal velocity is 570, suppressed velocity is 570 * 0.6 = 342. That would put theoretical maximum range at 712m normal and 427m suppressed.

ADS Movespeed Multiplier

planetside 2 infantry movement speed

Normally, you can move only at 50% speed while aiming down sights. However, some of the weapons allow you to move at 75% speed while aiming down sights. Naturally, being faster is good, as it means you’ll have easier time dodging incoming fire while aiming. 

Here’s a list of weapons that have 0.75x ADS Movespeed multiplier:

  • Assault Rifles: TAR, GR-22, Carnage BR, H-V45, NS-11A
  • Carbines: LC3 Jaguar, AF-4A Bandit, Zenith VX-5, NS-11C
  • Shotguns: ALL, including NC05 Jackhammer
  • SMGs: ALL
  • Sidearms: ALL
  • LMGs: NS-15M
  • Scout Rifles: NS-30 Vandal

Scope-In and Scope-Out Times

Scope In is the time it takes you aim down sights:

  • 250-300ms for sniper rifles
  • 350ms for Rocket Launchers
  • 150ms for other weapons. 
  • HS/NV scope has longer Scope In time than normal reflex sights.

Scope Out is the time it takes you to return to hip firing:

  • 150 ms for most weapons

You can find specific numbers here (possibly outdated).

Please note, these are weapon and interface animation times. The Cone of Fire that affects actual weapon accuracy changes independently, the process is described in detail in Cone of Fire section above.

Recoil Mechanics

Even though we have the stats, we still don’t know how exactly weapon recoil works. I have analyzed a ton of data and conducted a lot of experiments myself, and came up with the following speculation, but it was never directly confirmed by PlanetSide 2 devs. 

Here are recoil stats of the TRAC 5, taken from the spreadsheet.

TRAC 5 recoil stats

All presented values are measured in degrees, except for the FSRM.

Each weapon has a recoil pattern resembling a letter T. Let’s construct such a pattern for TRAC 5:

TRAC 5 recoil pattern

  • Blue dot symbolizes the center of your Cone of Fire, located in the center of the screen.
  • Red line symbolizes “vertical” recoil. “Vertical” is in quotes, because as you can see on the picture, red line isn’t exactly vertical. Same goes for “horizontal” recoil, which isn’t truly horizontal either. This is because of the Recoil Angle, applied to the whole recoil pattern.
  • Green line symbolizes “horizontal” recoil. 
  • A and B orange zones symbolize the multitude of points to which the recoil can kick your aim after the shot. Which zone gets chosen is completely random for each shot, as long as your current shot sequence is within Horizontal Tolerance (not displayed on this picture).

Now that we’ve created a recoil pattern, we can predict how a recoil path would look:

TRAC 5 recoil path

Without recoil patterns:

TRAC 5 recoil path without patterns

Let’s talk through what all those different recoil stats actually mean.

Recoil Angle

Recoil Angle

TRAC 5 Recoil Angle: 23/25. Listed as minimum / maximum.

Recoil angle for each shot is chosen randomly from this range. It affects both horizontal and vertical recoils. Recoil angle is the cause of some weapons having a recoil pattern biased to left or right. “Horizontal recoil bias” does not exist as a thing.

Let’s take a look on how recoil angle works, using Eridani SX5 as an example:

Eridani SX5 SMG has 0.3/0.392 horizontal recoil, 0.2 vertical and 20/20 recoil angle.

As you see on the video, the recoil either:

  • kicks slightly left and hard up
  • kicks hard right almost without upwards movement

The reason for this is because Eridani’s recoil pattern looks like this:
Eridani Recoil Pattern

The video above proves:

For all weapons, horizontal recoil functions the same – it produces a random shaking, uncontrollable and unpredictable jitter along the axis which is perpendicular to vertical recoil’s axis.

Each shot with a weapon without recoil angle (aka “no horizontal bias”) will kick the crosshair randomly to the left or right.

If a weapon has positive recoil angle (has a “horizontal recoil biased to the right”), the horizontal recoil will still randomly kick the crosshair to the left or right, but it will a bit less apparent, especially on weapons with strong recoil angle and weak horizontal recoil. A left kick of the horizontal recoil will seem like an upwards movement with barely any angle at all, while horizontal kick to the right will seem like a hard dive to the right. 

This disproves a popular myth that weapons with biased recoil are more effective at range because “their recoil pattern is more predictable”. 

The difference between Recoil Angle minimum and maximum values is called Recoil Angle Variance. High Recoil Angle Variance reduces stability of the recoil pattern, as shown here.

Horizontal Recoil Bias

Horizontal Recoil Bias – is a completely misleading term, used by people that don’t know how recoil works. Whether the gun has overall a left or right pull has no connection with horizontal recoil, and is actually determined by Recoil Angle:

  • If Recoil Angle is greater than zero, the gun will have a right pull.
  • If Recoil Angle is less than zero, the gun will have a left pull.
  • If Recoil Angle is equal to zero, the gun will have no bias. 

Recoil angle of TRAC 5 is greater than zero, so it has a noticeable right pull.

Vertical Recoil

TRAC 5 Vertical Recoil: 0.3. 

Vertical Recoil has always the same value for each shot, and it is the most consistent value in the whole recoil system. 

Horizontal Recoil

TRAC 5 Horizontal Recoil: 0.225 / 0.225. 

These aren’t “left and right”, these are “minimum and maximum”. TRAC 5 has invariable horizontal recoil, it’s always either 0.225 in one direction or 0.225 in another direction.

  • Some weapons have variable horizontal recoil, for them, not only the direction of horizontal recoil is random, but the magnitude as well.
  • Because of the random nature of the horizontal recoil’s direction, horizontal recoil is impossible to compensate, and it is the greatest source of recoil pattern unpredictability. 

Horizontal Recoil Tolerance

TRAC 5 Horizontal Tolerance: 0.55
TRAC 5 Max Number of Consecute Kicks: 2
TRAC 5 Recoil Pattern Width:
 0.9 degrees

Horizontal Recoil Tolerance sets a limit on how far Horizontal Recoil can kick your crosshair from the initial aiming position. 

You can find a full explanation of Horizontal Recoil Tolerance in this article, here in this guide I will offer only basic information.

Horizontal Recoil Tolerance

On the basic level, HRT limits the total width of the recoil pattern.

If you imagine HRT as an angle, the center of that angle is the position of your crosshair during the first shot.

HRT explanation

If the gun recoils left several times and exceeds the left half of tolerance, it will be forced to to recoil right at least once. 

Crosshair position for your first shot in a burst splits HRT in halves, so that’s what we care about – half of tolerance, not the whole value.

Let’s use Gauss SAW as an example:

Horizontal Recoil: 0.175 / 0.175
Horizontal Recoil Tolerance: 0.525

This is a recorded path of the crosshair during a long burst with Gauss SAW, similar to this video.

Gauss Saw Horizontal Recoil Tolerance

full path - HRT

Accumulated horizontal recoil from 2 shots of Gauss SAW is equal to 0.35, which is greater than half of tolerance: 0.2625. That is why Gauss SAW can only recoil twice in the same direction. 

The funny part is that HRT could take different values without affecting anything. Gauss SAW could have Tolerance anywhere between 0.36 and 0.69, and the result would be exactly the same – still kick only up to 2 times in the same direction.

HRT deviation

This leads to funny and unexpected things. For example:

T32 Bull: 0.18 / 0.18 Recoil, 0.5 Tolerance
T16 Rhino: 0.2 / 0.2 Recoil, 0.7 Tolerance
TMG-50: 0.175 / 0.175, 0.7 Tolerance

T32 Bull has much lower Tolerance than T16 Rhino, yet they both kick up to 2 times in one direction.

TMG-50 has same tolerance as T16 Rhino, but lower Horizontal Recoil, so it kicks up to 3 times in one direction, giving it a wider recoil pattern.

Recoil Pattern Width

Knowing how HRT works, you can calculate the width of the recoil pattern: the distance between the extremities of Horizontal Recoil:

recoil pattern width

Notice that Width is always larger than HRT, because Horizontal Recoil can exceed half of HRT once.

Calculations

First you will have to calculate the maximum amount of horizontal recoil kicks in the same direction:

N_Kicks = Round_Down ((HRT / 2) / Horizontal Recoil Minimum) + 1

In other words, to calculate the number of kicks, you have to divide HRT by 2, then divide the result by Minimum Horizontal Recoil, then round the result down, and then increase it by one.

No, you can’t just round the result up instead, because accumulated horizontal recoil can be equal to HRT / 2 and still kick further. In other words, a weapon with 0.2/0.2 Recoil and 0.4 Tolerance will kick up to 2 times. 

For example:

TRAC 5
Horizontal Recoil: 0.225 / 0.225
Horizontal Recoil Tolerance: 0.55

HRT / 2 = 0.275
0.275 / 0.225 = 1.22222
Round it down to 1, then increase by 1

N_Kicks = 2

When you know the maximum amount of kicks, you can calculate the total width of the recoil pattern:

Width = N_Kicks * Horizontal Recoil Maximum * 2

For TRAC 5:

Recoil Pattern Width = 0.225 * 2 * 2 = 0.9 degrees

This means that as long as target’s Angular Size is less or equal to 0.9 degrees, you are guaranteed to hit it, from the standpoint of Horizontal Recoil. 

First Shot Recoil Multiplier

TRAC 5 First Shot Recoil Multiplier: 2.35x. 

FSRM multiplies Vertical Recoil of:

  • first shot of each fixed burst
  • each shot done in semi-auto
  • first shot in a full auto series of shots

High FSRM values make the weapon harder to control and burst fire. Due to CoF mechanics, first few shots are the most accurate, and it is a problem if they all fly god knows where while you try tor recover from extremely high FSRM. 

Burst weapons have very low first shot recoil multiplier, so the first two rounds of a burst land very close. 

Recoil Recovery Delay

After you stop firing, your crosshair will move back to its original position. This process will begin after a delay.

True Delay = Refire Time + Recoil Recovery Delay

Refire Time is the minimum amount of time between two shots. It can be calculated as:

Refire Time = 60 / Rate of Fire

Recoil Recovery Delay is a hidden statistic, and can be accessed through DBG API.

Recoil Recovery Delay is often equal to weapon’s Refire Time, making the True Delay equal to 2x Refire Time.

Notable exceptions: Shotguns, Battle Rifles, Semi Auto Sniper Rifles and Semi Auto Scout Rifles all start crosshair movement earlier, making it easier to take several shots in a quick succession. 

You can learn more about Recoil Recovery Delay in this article.

Recoil Decrease

(Recoil Recovery Rate)

TRAC 5 Recoil Decrease: 18. 

Measured in degrees per second, Recoil Decrease determines the speed at which your crosshair returns to original position after you stop firing. 

  • High Recoil Decrease value is handy for burst firing, as it allows you to quickly re-acquire the target after a burst and re-center your crosshair on it.

Recoil Recovery Acceleration

We don’t know much about this parameter beyond this:

Recoil recovery acceleration is set to 1000 as a baseline. I don’t know what the time scale is on that, but it seems to modify the recoil settle speed. 1000 seems to keep the recoil recovery consistent. If you drop it lower, it seems to accelerate the recoil recovery up to its normal recoil recovery value. (c) Wrel

 Recentering Time
(for Tap Firing)

Recentering time depends on five weapon stats: Vertical Recoil, Horizontal Recoil, Refire Time, Recoil Recovery Delay and Recoil Decrease. 

How it works

You fire a shot and your crosshair gets kicked by Recoil. Then, after a delay equal to Refire Time + Recoil Recovery Delay, crosshair starts returning to original position. The speed of crosshair movement is equal to Recoil Decrease, measured in degrees per second.

Full formula

Recentering Time Formula
Click to enlarge

So, for fast tap firing you want to have: high Rate of Fire, low Recoil and Recoil Recovery Delay values and high Recoil Decrease.

Let’s analyze Recentering Time on the example of shotguns. We will compare their recentering time for the purposes of Tap Firing with slug ammo.

All shotguns have Recoil Recovery Delay of 0.

  Rate of Fire Vertical Recoil Horizontal Recoil Recoil
Decrease
Calculated Recentering Time Measured Recentering Time
Quick Reload 225 2.8 0.5 15 0.457 N/A
High Capacity 225 2.5 0.65 15 0.439 N/A
Full Auto 260 2.0 0.95 12 0.416 N/A
Baron 200 2.2 0.45 15 0.450 N/A

 

 It’s worth noting that recentering time only concerns the crosshair movement. Cone of Fire reset is a separate mechanic. 

Theoretically it’s possible to fire the next shot before crosshair fully returns from the previous shot, but it’s very hard to aim while crosshair is moving on its own.

Recap

Let’s recap what we’ve learned. The randomness of a recoil pattern is caused by:

  1. Recoil Angle Variance.
  2. Magnitude of the Horizontal Recoil, and whether it is variable or invariable.
  3. Direction of the Horizontal Recoil. It is random for each shot, as long as it is within Horizontal Recoil Tolerance.
  4. Horizontal Recoil Tolerance.

And, of course, the biggest source of random is the Cone of Fire, the center of which travels along with the center of the screen kicked by recoil, and the bullets can land at any point within the cone of fire, which grows with each shot.

Scope Magnification

Aiming down sights increases relative recoil by scope’s magnification.

Iron Sights and 1x scopes increase relative recoil by 35%, 2x reflex by 100%, and so on. So naturally recoil is much harder to control when you use high-magnification scopes.

Recoil scaling

Until recently, I wasn’t that recoil scaling even existed, so we don’t know much beyond this:

Some weapons in PlanetSide 2 have recoil scaling over time. Each consecutive shot may have more or less recoil than previous shot.

Both horizontal and vertical recoil can be scaled. How it works:

Recoil increases in value per shot. So if my minimum vertical recoil is 0.2, and my vertical recoil scaling is 0.05, it’ll be 0.2 on the first shot, 0.25 on the second shot, 0.3 on the third shot. (c) Wrel

Something related to recoil scaling is listed in DBG API:

“recoil_increase”: 
“recoil_increase_crouched”: These two values appear to be the mention “recoil increases per shot”, though it isn’t clear whether they affect vertical or horizontal recoil, or both.

“recoil_max_total_magnitude”: Speculatively, sets a limit on how much recoil scaling can affect recoil per shot.

“recoil_magnitude_max”: 
“recoil_magnitude_min”: These two values determine the Vertical Recoil, and usually they are equal to each other, but it’s possible they somehow participate in recoil scaling mechanics.

“recoil_shots_at_min_magnitude”: Was seen equal 1 or 0. Speculatively, this value determines whether the weapon uses recoil scaling at all.

Recoil classification

  1. Horizontal recoil can be with or without variance.
    1. For example, VX6-7 has unvaried horizontal recoil: 0.25 / 0.25
    2. Serpent VE92 has varied: 0.25 / 0.275
  2. Recoil angle can be: equal to zero, varied or unvaried.
    1. Example: GD-7F has varied recoil angle of -20/-18.
    2. T5 AMC has unvaried recoil angle of 20/20.
    3. Pulsar C has no recoil angle.

Together, these two give us 2 x 3 = 6 total recoil variants. Here they are, from best to worst:

Unvaried horizontal recoil, no recoil angle

Mercenary Recoil Pattern
Variables: 1) Direction of the horizontal shift

The best kind of recoil. The only variable in this type of recoil is whether horizontal recoil will kick left or right, and this is random for each shot.

The distances between crosshair positions are always equal, so all you can/need to do to compensate for this type of recoil, is to pull your mouse down at a constant rate.

Unvaried horizontal recoil, unvaried recoil angle

Razor Recoil Pattern

Variables: 1) Direction of the horizontal shift

Additionally: 1) Harder to track targets moving to the left or right

Practically same as the previous type, but with angle applied to it.

A bit less convenient to compensate for, because you need to pull your mouse at an angle. As long as target is stationary, compensating for this type of recoil is practically the same as for the non-angled recoil – just pull your mouse at a constant rate into the opposite direction.

However, things become complicated when you try to track a moving target and compensate for angled recoil at the same time. Here’s an example to explain that (numbers are purely fictional):

Let’s say that to compensate for angled recoil you need to pull your mouse down at speed of 50 pixels per second, and to the left at 15 px/s. 

  • The target is moving to the left at a rate of 30 pixels per second. To track it and compensate the recoil, you need to pull your mouse down at 50 px/s, and to the left at 45px/s (15 px/s to compensate for recoil, and additional 30px so your crosshair moves with the target).
  • If the target is moving to the right, you need to move mouse down at 50 px/s, and to the right at 15px/s (30 px to the right, minus 15px/s to the right the angled recoil is already doing for you).
  • This kind of left-right imbalance can be hard to adjust on the fly. 

There is a popular myth that angled recoil is more stable, predictable and easier to compensate. But for all intents and purposes, angled recoil with no horizontal variance is the same or worse than non-angled recoil with no horizontal variance.

Varied horizontal recoil, no recoil angle

Jaguar Horizontal Recoil

Variables:

1) Direction of the horizontal shift

2) Size of the horizontal shift

Similar to the first type, but in this case horizontal shift for each shot is randomly taken from the range of [Min; Max]. For the Jaguar, horizontal recoil is 0.245/0.275, so each shot’s horizontal shift can be anywhere from 0.245 to 0.275. This reduces the consistency of the recoil pattern by introducing an additional variable.

Varied horizontal recoil, unvaried recoil angle

Eridani Recoil Pattern

Variables:

1) Direction of the horizontal shift

2) Size of the horizontal shift

Additionally: 1) Harder to track targets moving to the left or right

A combination of two previous types, has both of their weaknesses. A fairly rare type of recoil.

Unvaried horizontal recoil, varied recoil angle

VX6-7 Recoil Pattern

Variables:

1) Direction of the horizontal shift

2) Size of the horizontal shift due to recoil angle

3) Direction of the vertical shift due to recoil angle

4) Size of the vertical shift due to recoil angle

Additionally: 1) Harder to track targets moving to the left or right

This recoil type introduces an additional variable: the recoil angle.

 This creates a three-fold problem:

1) The direction of the vertical recoil is random for each shot, so you can’t precisely compensate for it, because you don’t know precisely where it’s going to be directed.

Let’s take a closer look at one of the “horns” of the picture above:

VX6-7 Recoil horn

Varied recoil angle introduces A and B.

“A” is the variance of the vertical shift. For VX6-7 it is equal 0.0275. So while the vertical recoil of VX6-7 is constant at 0.3, due to the random recoil angle it varies from 0.3 to 0.2725.

In this case, the recoil angle variance of 10 degrees, introduced vertical recoil variance of ~10%.

So not only the direction of the vertical shift is random, but also its magnitude.

“B” is the variance of the horizontal shift. While the horizontal recoil of VX6-7 is constant at 0.25, due to random recoil angle it varies from 0.25 to 0.21.

In this case, the recoil angle variance of 10 degrees introduced horizontal recoil variance of ~19%.

Varied horizontal recoil with varied angle

Serpent Recoil Pattern

note: Serpent’s stats on this picture are outdated!

Variables:

1) Direction of the horizontal shift

2) Size of the horizontal shift due to recoil angle

3) Size of the horizontal shift due to random horizontal recoil

4) Direction of the vertical shift due to recoil angle

5) Size of the vertical shift due to recoil angle

Additionally: 1) Harder to track targets moving to the left or right

The worst type of recoil, usually found on CQC weapons. In addition to the example above, it also has innate horizontal recoil variance.

In theory, Serpent has horizontal recoil of 0.25/0.275, but due to recoil angle these values are actually closer to 0.2/0.275.

On average, this means that Serpent will have less horizontal recoil than it should. While less horizontal recoil should be good in theory, in practice, the big difference between maximum and minimum horizontal recoil values means that the gun will have a higher chance of “veering off” the target. 

Share with:

FacebookTwitterGoogleTumblrLinkedInRedditPinterest


3 thoughts on “Weapon Mechanics

Leave a Reply

Your email address will not be published. Required fields are marked *